Complexity Archive April 2014
The infection tree of global epidemics
The spreading of transmissible infectious diseases is inevitably entangled with the dynamics of human population. Humans are the carrier of the pathogen, and the large-scale travel and commuting patterns that govern the mobility of modern societies are defining how epidemics and pandemics travel across the world. For a long time, the development of quantitative spatially explicit models able to shed light on the global dynamics of pandemic has been limited by the lack of detailed data on human mobility. In the last 10 years, however, these limits have been lifted by the increasing availability of data generated by new information technologies, thus triggering the development of computational (microsimulation) models working at a level of single individuals in spatially extended regions of the world. Microsimulations can provide information at very detailed spatial resolutions and down to the level of single individuals. In addition, computational implementations explicitly account for stochasticity, allowing the study of multiple realizations of epidemics with the same parameters’ distribution. While on the one hand these capabilities represent the richness of microsimulation methods, on the other hand they face us with a huge amount of information that requires the use of specific data reduction methods and visual analytics.
Towards a Methodology for Validation of Centrality Measures in Complex Networks
Our empirical analysis demonstrates that in the chosen network data sets, nodes which had a high Closeness Centrality also had a high Eccentricity Centrality. Likewise high Degree Centrality also correlated closely with a high Eigenvector Centrality. Whereas Betweenness Centrality varied according to network topology and did not demonstrate any noticeable pattern. In terms of identification of key nodes, we discovered that as compared with other centrality measures, Eigenvector and Eccentricity Centralities were better able to identify important nodes.
The Social Face of Complexity Science: A Festschrift for Professor Peter M. Allen
This work is to honour Professor Peter M. Allen, a seminal figure in the foundation and development of Complexity Science in human systems. From before the time of his joining Nobel Prize winner Ilya Progogine’s pioneering group at the Université libre de Bruxelles in 1967 Peter had started publishing on what was then known as Prigogine theory in physics. But it was only after this that his own pioneering work in Complexity Science showed the importance of its applications in evolutionary and human sciences. Since then he has been an influential and guiding figure in this field. The works collected are by admiring colleagues, friends and collaborators, all leaders in their fields, influenced by his seminal ides, and gathered from across a gamut of fields in human systems. This makes this a valuable and unique work, a veritable reader in the influence Complex Systems theory on a wide and diverse range of fields; from archaeology, city design, international banking, economics, policy studies and more.
Why marathons have runner ‘traffic jams’
How do such crowding problems arise, and could they be reduced? Some researchers believe that we can find the answers through a more familiar system in which jams appear ? road traffic flow. Martin Treiber, of the Technical University of Dresden in Germany, has previously developed models for traffic flow, and now he has reported modifications that capture the essential details of sporting events such as marathons.
Crisis Responses and Crisis Management: what can we learn from Biological Networks?
The generality of network properties allows the utilization of the wisdom of biological systems surviving crisis events for many millions of years. Yeast protein-protein interaction network shows a decrease in community-overlap (an increase in community cohesion) in stress. Community rearrangement seems to be a cost-efficient, general crisis-management response of complex systems. Inter-community bridges, such as the highly dynamic creative nodes emerge as crucial determinants helping crisis survival.
Hierarchical Block Structures and High-Resolution Model Selection in Large Networks
Social, technological, and biological networks are known to organize into modules or communities.Characterizing and identifying modules is highly nontrivial and still an outstanding problem in networks research. A new approach uses both the concept of modular hierarchy for network construction and the methods of statistical inference to address this problem, succeeding where the existing approaches see difficulties.
Information Flow in Animal-Robot Interactions
The nonverbal transmission of information between social animals is a primary driving force behind their actions and, therefore, an important quantity to measure in animal behavior studies. Despite its key role in social behavior, the flow of information has only been inferred by correlating the actions of individuals with a simplifying assumption of linearity. In this paper, we leverage information-theoretic tools to relax this assumption. To demonstrate the feasibility of our approach, we focus on a robotics-based experimental paradigm, which affords consistent and controllable delivery of visual stimuli to zebrafish. Specifically, we use a robotic arm to maneuver a life-sized replica of a zebrafish in a predetermined trajectory as it interacts with a focal subject in a test tank. We track the fish and the replica through time and use the resulting trajectory data to measure the transfer entropy between the replica and the focal subject, which, in turn, is used to quantify one-directional information flow from the robot to the fish. In agreement with our expectations, we find that the information flow from the replica to the zebrafish is significantly more than the other way around. Notably, such information is specifically related to the response of the fish to the replica, whereby we observe that the information flow is reduced significantly if the motion of the replica is randomly delayed in a surrogate dataset. In addition, comparison with a control experiment, where the replica is replaced by a conspecific, shows that the information flow toward the focal fish is significantly more for a robotic than a live stimulus. These findings support the reliability of using transfer entropy as a measure of information flow, while providing indirect evidence for the efficacy of a robotics-based platform in animal behavioral studies.
Evolutionary Multiplayer Games
Evolutionary game theory has become one of the most diverse and far reaching theories in biology. Applications of this theory range from cell dynamics to social evolution. However, many applications make it clear that inherent non-linearities of natural systems need to be taken into account. One way of introducing such non-linearities into evolutionary games is by the inclusion of multiple players. An example is of social dilemmas, where group benefits could e.g.\ increase less than linear with the number of cooperators. Such multiplayer games can be introduced in all the fields where evolutionary game theory is already well established. However, the inclusion of non-linearities can help to advance the analysis of systems which are known to be complex, e.g. in the case of non-Mendelian inheritance. We review the diachronic theory and applications of multiplayer evolutionary games and present the current state of the field. Our aim is a summary of the theoretical results from well-mixed populations in infinite as well as finite populations. We also discuss examples from three fields where the theory has been successfully applied, ecology, social sciences and population genetics. In closing, we probe certain future directions which can be explored using the complexity of multiplayer games while preserving the promise of simplicity of evolutionary games.
Revealing the structure of the world airline network
Resilience of most critical infrastructures against failure of elements that appear insignificant is usually taken for granted. The World Airline Network (WAN) is an infrastructure that reduces the geographical gap between societies, both small and large, and brings forth economic gains. With the extensive use of a publicly maintained data set that contains information about airports and alternative connections between these airports, we empirically reveal that the WAN is a redundant and resilient network for long distance air travel, but otherwise breaks down completely due to removal of short and apparently insignificant connections. These short range connections with moderate number of passengers and alternate flights are the connections that keep remote parts of the world accessible. It is surprising, insofar as there exists a highly resilient and strongly connected core consisting of a small fraction of airports (around 2.3%) together with an extremely fragile star-like periphery. Yet, in spite of their relevance, more than 90% of the world airports are still interconnected upon removal of this core. With standard and unconventional removal measures we compare both empirical and topological perceptions for the fragmentation of the world. We identify how the WAN is organized into different classes of clusters based on the physical proximity of airports and analyze the consequence of this fragmentation.
Spreading dynamics on networks: the role of burstiness, topology and stationarity
Spreading on networks is influenced by a number of factors including different parts of the inter-event time distribution (IETD), the topology of the network and nonstationarity. In order to understand the role of these factors we study the SI model on temporal networks with different aggregated topologies and different IETDs. Based on analytic calculations and numerical simulations, we show that if the stationary bursty process is governed by power-law IETD, the spreading can be slowed down or accelerated as compared to a Poisson process; the speed is determined by the short time behaviour, which in our model is controlled by the exponent. We demonstrate that finite, so called “locally tree-like” networks, like the Barab\’asi-Albert networks behave very differently from real tree graphs if the IETD is strongly fat-tailed, as the lack or presence of rare alternative paths modifies the spreading. A further important result is that the non-stationarity of the dynamics has a significant effect on the spreading speed for strongly fat-tailed power-law IETDs, thus bursty processes characterized by small power-law exponents can cause slow spreading in the stationary state but also very rapid spreading heavily depending on the age of the processes.
Network Weirdness: Exploring the Origins of Network Paradoxes
Social networks have many counter-intuitive properties, including the “friendship paradox” that states, on average, your friends have more friends than you do. Recently, a variety of other paradoxes were demonstrated in online social networks. This paper explores the origins of these network paradoxes. Specifically, we ask whether they arise from mathematical properties of the networks or whether they have a behavioral origin. We show that sampling from heavy-tailed distributions always gives rise to a paradox in the mean, but not the median. We propose a strong form of network paradoxes, based on utilizing the median, and validate it empirically using data from two online social networks. Specifically, we show that for any user the majority of user’s friends and followers have more friends, followers, etc. than the user, and that this cannot be explained by statistical properties of sampling. Next, we explore the behavioral origins of the paradoxes by using the shuffle test to remove correlations between node degrees and attributes. We find that paradoxes for the mean persist in the shuffled network, but not for the median. We demonstrate that strong paradoxes arise due to the assortativity of user attributes, including degree, and correlation between degree and attribute.
Behavioral and Network Origins of Wealth Inequality: Insights from a Virtual World
Almost universally, wealth is not distributed uniformly within societies or economies. Even though wealth data have been collected in various forms for centuries, the origins for the observed wealth-disparity and social inequality are not yet fully understood. Especially the impact and connections of human behavior on wealth could so far not be inferred from data. Here we study wealth data from the virtual economy of the massive multiplayer online game (MMOG) Pardus. This data not only contains every player’s wealth at every point in time, but also all actions of every player over a timespan of almost a decade. We find that wealth distributions in the virtual world are very similar to those in western countries. In particular we find an approximate exponential for low wealth and a power-law tail. The Gini index is found to be g=0.65, which is close to the indices of many Western countries. We find that wealth-increase rates depend on the time when players entered the game. Players that entered the game early on tend to have remarkably higher wealth-increase rates than those who joined later. Studying the players’ positions within their social networks, we find that the local position in the trade network is most relevant for wealth. Wealthy people have high in- and out-degree in the trade network, relatively low nearest-neighbor degree and a low clustering coefficient. Wealthy players have many mutual friendships and are socially well respected by others, but spend more time on business than on socializing. We find that players that are not organized within social groups with at least three members are significantly poorer on average. We observe that high `political’ status and high wealth go hand in hand. Wealthy players have few personal enemies, but show animosity towards players that behave as public enemies.
Complexity Archive April 2014
– Gottfried Mayer, Founding Editor
– Carlos Gershenson, Editor-in-Chief